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The interpretation of mode shapes and dynamic response of bending-torsion coupled
beams is assessed by using the concept of generalized mass. In the "rst part of this
investigation, the free vibratory motion of bending}torsion coupled beams is studied in
detail. The conventional method of interpreting the normal modes of vibration consisting of
bending displacements and torsional rotations is shown to be inadequate and replaced by an
alternative method which is focussed on the constituent parts of the generalized mass arising
from bending and torsional displacements. Basically, the generalized mass in a particular
mode is identi"ed and examined in terms of bending, torsion and bending}torsion coupling
e!ects. It is demonstrated that the contribution of individual components in the expression
of the generalized mass of a normal mode is a much better indicator in characterizing
a coupled mode. It is also shown that the usually adopted criteria of plotting bending
displacement and torsional rotations to describe a coupled mode can be deceptive and
misleading. In the second part of the investigation, attention is focussed on the dynamic
response characteristics of bending}torsion coupled beams when subjected to random
bending or torsional loads. A normal mode approach is used to establish the total response.
The input random excitation is assumed to be stationary and ergodic so that with the
linearity assumption, the output spectrum of the response is obtained by using the frequency
response function. The contribution of each normal mode to the overall response is isolated.
Particular emphasis is placed on bending-induced torsional response and torsion-induced
bending response. A number of case studies involving di!erent types of bending}torsion
coupled beams with Cantilever end conditions are presented. The limitations of existing
methods of modal interpretation are highlighted, and an insight into the mode selection for
response analysis is provided.

( 2000 Academic Press
1. INTRODUCTION

A considerable amount of research e!ort has gone into the investigation of free or forced
vibration characteristics of bending}torsion coupled beams in recent years. This is because
for many practical beams with cross-sections such as angle, tee, channel, etc., the vibratory
motion is always coupled between bending and torsional deformations due to
non-coincident centroid and shear centre. From an aeronautical point of view, perhaps, the
most important example of a bending}torsion coupled beam is an aircraft wing for which
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the mass and elastic axes (which are, respectively, the loci of centroids and shear centres of
the wing cross-sections) rarely coincide. Investigators of the free and forced vibration
analysis of such beams recognised the important e!ect of the bending}torsion coupling on
natural frequencies, mode shapes and response. A comprehensive review of major works on
the free and forced vibration of coupled beams can be found in reference [1].

For free vibration of uncoupled beams, the interpretation of mode shapes is quite
straightforward because the bending displacements and torsional rotations being
uncoupled are independent, and thus can be plotted separately along the length of the
beam. However, when coupling exists, the simplicity of the uncoupled case disappears
because the bending displacements and torsional rotations are dependent on each other.
Nevertheless, one is generally left with the same choice of plotting the bending
displacements and torsional rotations together on the same graph. This traditional
procedure relies on comparing the relative deformations in bending and torsional motions,
which are in fact two di!erent types of displacements with di!erent units. Although such
a procedure has been used frequently to characterize a bending}torsion coupled mode, it
will be shown that on many occasions it can lead to erroneous conclusions.

From the point of view of dynamic response, the choice of a normal mode is of great
importance. One of the essential purposes of this paper is to show that characterization of
a coupled mode by using the conventional procedure may not be adequate in deciding the
number and type of normal modes to be included in the response analysis.

By using the concept of generalized mass, a comparatively new approach in interpreting
a bending}torsion coupled mode is introduced in this paper. Circumstances where
commonly adopted criteria of choosing modes which could lead to wrong conclusions are
identi"ed. For free vibration characteristics, the paper deals with individual terms that
contribute to the "nal expression of the generalized mass in a particular normal mode.
Contributions of terms associated with bending, torsional and bending}torsion coupling
e!ects to the overall generalized mass are examined for their relative importance. Then the
response of the beam to a concentrated random force or torque (which is that of a white
noise) is taken up by using the normal mode method and generalized co-ordinates. The
constituent components of the generalized mass are used as indicative parameters in the
choice of normal modes and the interpretation of response.

The theory used in this work is exact in the sense that the governing di!erential equations
of motion are solved analytically without making any approximation enroute. For numerical
results related to both free vibration and response analyses, a wide range of illustrative
examples is carefully chosen for which cantilever end conditions are applied. Conclusions are
drawn from the results of each example, and the shortcomings of existing procedures are
outlined. Although the results are given for cantilever end condition of the beams, the theory
developed is fairly general and can be easily applied to other end conditions.

2. THEORY

A bending}torsion coupled beam undergoing free natural vibration can have both its
transverse and lateral displacements coupled with torsion. This generally occurs when the
beam cross-section is asymmetric. The free vibration analysis of such beams has been
addressed in the literature [2}4]. In the relatively simpler case when the cross-section of the
beam has a single axis of symmetry, the free vibratory modes consist of bending
displacements in one plane which are coupled with torsional rotation, and the bending
displacements in the other plane which are de-coupled from torsion [5, 6]. A high aspect
ratio aircraft wing can be idealized as a bending}torsion coupled beam [7, 8] for which the
torsional coupling occurs only in one of the principal planes of bending. This is because the



Figure 1. (a) The co-ordinate system and notation of a bending}torsion coupled beam; (b) distribution of
#exural and torsional loads.
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chordwise bending is usually negligible as a result of the relatively small thickness to chord
ratio of the wing. From an aeroelastic point of view, such a model gives completely
satisfactory results [9, 10]. In the subsequent text of this paper, attention is focussed on this
simpli"ed model of a bending}torsion coupled beam.

As an example of a bending}torsion coupled beam, a uniform aircraft wing of length ¸ is
shown in Figure 1, in a right-handed co-ordinate system. The mass and elastic axes of the
wing are separated by a distance xa as shown. It is assumed that the o!set in the Z-direction
(za) of the shear centre from the centroid of the wing cross-section is very small so that the
torsional coupling in the chordwise direction is negligible. The fundamental prerequisite in
response analysis put forward in this paper is based on the determination of the free
vibrational modes. These are obtained by setting the external forces and damping to zero in
the governing di!erential equations given below. The essential purpose of this paper is to
present results with particular reference to generalized mass. Therefore, only a brief account
of the theory is given here; a detailed description can be found in the literature [1, 11].

2.1. GOVERNING DIFFERENTIAL EQUATIONS OF MOTION

The di!erential equations of motion of a viscously damped uniform bending}torsion
coupled beam (see Figure 1) are taken in the following form, in the same notation as in
reference [1], in which a fuller details of the analysis can be found:

Elu@@@@!c
1
(uR !xatQ )!m(uK!xatG )"f (y, t), (1)

GJtA!c
2
tQ #c

1
xauR !IatG#mxauK"g (y, t). (2)

Here u"u (y, t) and t"t(y, t) are the transverse displacement and the torsional rotation
of the elastic axis of the beam, respectively, f (y, t) and g (y, t) are the external forces and
torque acting on and about the elastic axis of the beam; m is the mass per unit length, EI and
GJ are, respectively, the bending and torsional rigidities of the beam, Ia is the mass moment
of inertia per unit length about the elastic axis and an overdot and a prime represent
di!erentiations with respect to time t and space y respectively.

Note that in the derivation of equations (1) and (2), elementary bending and torsion
(coupled) beam theory [1, 5, 7, 8] has been used and the derivation assumes zero warping
sti!ness so that the torsional rigidity, torque and twist are related by the well-known St.
Venant torsion theory.

The coe$cients c
1

and c
2

in equations (1) and (2) are linear viscous damping terms per
unit length for #exure and torsion respectively. It is assumed that each point of the
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cross-section moves with a di!erent local velocity, so that in equation (1), the local damping
force sums over the section to the given expression containing the c

1
term. Similarly, in

equation (2) the expression containing the c
2

term is a torque about the elastic axis because
of the elemental damping forces. No other sources of damping are taken into account.

2.2. FREE VIBRATION ANALYSIS

For undamped free vibration, the external load f (y, t) and torque g(y, t) are set to zero,
together with the damping coe$cients. For harmonic oscillation, the solutions for the mode
shapes are then of the form [1, 5, 8]
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where ; and W are the #exural deformation and torsional rotation, A
1
}A

6
and B

1
}B

6
are

the two di!erent sets of constants, respectively, and

m"y/¸. (5)

a, b, c appearing in equations (3) and (4) are functions of mechanical properties of the beam
[1, 8] and are given by

a"[2(q/3)1@2 cos(//3)!a/3]1@2, b"[2(q/3)1@2 cosM(n!/)/3)N#a/3]1@2,

c"[2(q/3)1@2 cosM(n#/)/3)N#a/3]1@2, (6)

where

q"b#a2/3, /"cos~1[(27abc!9ab!2a3)/M2(a2#3b)3@2N] (7, 8)

with

a"Iau2¸2/GJ, b"mu2¸4/EI, c"1!mx2a/Ia . (9)

The orthogonality condition of the principal modes of free vibration of the beam can be
derived as [1, 11]
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where k
n
is the generalized mass in the nth mode and d

mn
is the Kronecker delta function.

Note that the orthogonality condition is valid for any classical end conditions of the beam,
at m"0 and 1. From equation (10), it can be shown that the generalized mass associated
with a particular mode is as follows:
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As seen from equation (11), the expression for the generalized mass k
n

has three
components. These are: m;2

n
which is due to #exure alone, IaW2

n
which is due to torsion

alone and 2mxa(;n
W

n
) which is due to the bending}torsion coupling e!ect. In each of the

normal modes of vibration, the contribution of each term in the above equation is
a quantitative measure of the importance of that term to generalized mass and hence to the
response characteristics of that mode.
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2.3. RESPONSE TO RANDOM LOADS

Randomly varying #exural and torsional excitations may be represented by [1]

f (m, t)"f (m)s
f
(t) and g (m, t)"g (m)sg (t), (12)

where s
f
(t) and sg (t) are stochastic processes and their spectral densities are Ss

f
(X) and Ssg (X)

respectively. The cross-spectral densities for the above loadings are
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For distributed loading, the spectral density functions of the bending displacement and
torsional rotation (i.e., S

u
(m, X) and St (m, X)) are related to the cross-spectral densities of the

force S
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, X) by the relationships [1]
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where f
n
is the non-dimensional damping coe$cient in the nth mode given by [1, 11]
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The values of a
F
and a

G
are either 1 or 0 depending upon whether bending or torsional loads

are present or not. Finally, the mean square value of the response can be found by
integrating the spectral density functions over all frequencies, so that [1]

Su2(m, t)T"P
=

~=

S
u
(m, X) dX, St2(m, t)T"P

=

~=

St (m, X) dX. (20, 21)

If the input random excitation follows a Gaussian probability distribution, the response
probability will also be Gaussian and therefore, the response can be fully described by its
spectral density function.
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In the special case of white noise the power spectral density (PSD) is constant for all
frequencies. Thus, S

u
and St can be expressed as follows:

S
u
(m, X)"St(m, X)"S

0
, (22)

where S
0

is a constant.

3. DISCUSSION OF RESULTS

Results are given for four wide ranging bending}torsion coupled beams with Cantilever
end conditions. These examples which are available in the published literature, include two
aircraft wings, a box beam with an axial slit and a thin-walled beam with semi-circular
cross-section. All of them exhibit bending}torsion coupling due to non-coincident mass and
shear centres. For simplicity these beams have been numbered sequentially from r to u:
r is for the Goland wing [9], s is for the Loring wing [10], t is for the box beam with an
axial slit [8] and u is for the thin-walled beam with semi-circular cross-section [3]. The
basic data used in the analysis for these beams are given in Table 1.

The following results are given for each of the coupled beams: (a) the "rst six natural
frequencies and mode shapes; (b) comparison of generalized mass in each coupled mode
with the generalized mass in pure (uncoupled) bending or torsional displacements;
(c) contribution of each component (bending, torsion and coupling) to the generalized mass
in each of the normal modes; (d) contribution of each mode to the overall response of the
beam at the tip due to a unit #exural load at the tip; (e) modal contribution to the overall
response of the beam at the tip due to a unit torque at the tip. The above "ve sets of results
are categorized into a series (a)}(e), proceeded by the corresponding "gure number for the
particular beam under investigation.

The generalized mass associated with uncoupled free vibration of such beams [12] in
pure bending is mL/4 (kg m2) and in pure torsion is Ia¸/2 (kg m2) and the numerical values
for the particular beams investigated are given in Table 2. The wide ranging values of the
generalized mass in uncoupled bending and torsional modes for these illustrative examples
have been chosen to demonstrate the versatile application of the proposed method. The
dimensions shown are kg m2 since the bending de#ection of the tip is taken to be in meter.
For a bending}torsion coupled beam, the associated generalized mass in a normal mode
(coupled in bending and torsion) will not be equal to either of these two values, due to the
bending}torsion coupling e!ect. Moreover, in undamped and uncoupled free vibration of
beams, generalized masses for each of the #exural and torsional modes are constant in all
modes, but * as will be shown later * these values will be signi"cantly altered in each
mode for bending}torsion coupled beams due to the coupling e!ect.
TABLE 1

Structural properties of example beams coupled in bending and torsion

Type of example EI (N m2) GJ (N m2) m (kg/m) Ia (kg m) xa (m) ¸ (m)

Goland wing [9] 9)7567]106 9)88]105 35)75 8)65 0)183 6)096
Loring wing [10] 677)6 1019 8)06 0)0585 0)038 2)06
Box beam with an axial slit [8] 5)8]104 78)3 2)45 0)02 0)08 5)0
Thin-walled semi-circle [3] 6380)14 43)46 0)835 0)000501 0)0155 0)82



TABLE 2

Generalized mass for the uncoupled case of the example beams shown in
¹able 1

Generalized mass

Pure bending Pure torsion

Example beams m¸/4 (kg m2) Ia¸/2 (kg m2)

Goland wing [9] 54)483 23)365
Loring wing [10] 4)1509 0)060255
Box beam with an axial slit [8] 3)0625 0)05
Semi-circle, thin-walled [3] 0)17118 2)0541]10~4
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Results of the investigation for all the coupled beams numbered r}u are shown in
Figures 2}5, respectively, and the following observations are made when interpreting the
results.

3.1. FREE VIBRATION ANALYSIS

Figures 2(a)}(5a) show the "rst six natural frequencies and mode shapes for bending
displacements (;) and torsional rotation (W) of the each of the four example beams,
respectively, whilst Figures 2(b)}(5b) show the generalized mass associated with each of the
six modes together with the constant values for the uncoupled case. Figures (2c)}(5c) show,
in a histogram, the percentage contributions of individual terms in equation (11) to the
overall generalized mass. These "gures were critically examined to designate the true nature
of a coupled mode. The following general principles were applied in interpreting the modes
depicted by these three categories of results, namely the "gures of series (a)}(c).

For series (a), bending displacements (;) are directly compared with torsional rotations
(W), even though their units are di!erent. In series (b) the total generalized mass associated
with each mode is shown in a bar chart together with its constant value for the uncoupled
case in bending and torsional free vibration (see horizontal lines shown in the "gures). The
series (c) "gures show contributory terms as a percentage resulting from bending, torsion
and coupling e!ects which altogether sum to the total generalized mass. The "gures in this
particular series have been drawn using di!erent patterns, so that when all the individual
contributions are added up the net (100%) generalized mass is obtained.

These three di!erent ways of examining a coupled mode are particularly relevant to
compare one method with another. For series (a) "gures, a straightforward comparison is
made to determine whether a mode is bending, torsional or coupled. The series (b) "gures
reveal the nature of a normal mode in a very di!erent way because the total generalized
mass in a mode has been used as the indicative parameter in relation to its value for the
uncoupled case. Here the proximity of the actual generalized mass to the uncoupled value,
either bending or torsion, is taken as the criterion to interpret a mode. Finally, in series (c)
"gures, the intrinsic contribution of bending, torsion and coupling terms to the total
generalized mass in each mode is taken into account to illustrate the nature of the mode.

For presentational purposes, each of the normal modes is identi"ed in the following way:
(i) a mode with mostly bending displacements and with negligible torsional rotation,
referred to as B, (ii) a mode with mostly torsional rotation and with negligible bending



Figure 2. Signi"cance of generalized mass in the dynamic response characteristics of a bending}torsion coupled
beam using the example of Goland wing, (a) The "rst six natural frequencies (rad/s) and mode
shapes;(b) comparison of generalized mass in each bending}torsion coupled mode with generalized mass in pure
#exural or torsional modes; (c) contribution of each term (bending, torsion and coupling) to the generalized mass
in di!erent modes ( , bending; , torsion; , coupling); (d) percentage of modal contribution in the dynamic
#exural and torsional response of the beam at the tip due to the #exural load at the tip ( , bending; , torsion);
(e) percentage of modal contribution in the dynamic #exural and torsional response of the beam at the tip due to
the torque at the tip ( , bending; , torsion).
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displacements, referred to as T, (iii) a mode with predominant bending displacements and
with some appreciable torsional rotations resulting from light to moderate coupling,
referred to as BC , (iv) a mode with predominant torsional rotations and with some



Figure 3. Signi"cance of generalized mass in the dynamic response characteristics of a bending}torsion coupled
beam using the example of Loring wing, (a) the "rst six natural frequencies (rad/s) and mode shapes;
(b) comparison of generalized mass in each bending}torsion coupled mode with generalized mass in pure #exural
or torsional modes; (c) contribution of each term (bending, torsion and coupling) to the generalized mass in
di!erent modes ( , bending; , torsion; , coupling); (d) percentage of modal contribution in the dynamic
#exural and torsional response of the beam at the tip due to the #exural load at the tip ( , bending; , torsion);
(e) percentage of modal contribution in the dynamic #exural and torsional response of the beam at the tip due to
the torque at the tip, ( ,bending; , torsion).
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appreciable bending displacements resulting from light to moderate coupling, referred to as
TC , and (v) a mode in which bending displacements and torsional rotations play more or
less similar roles, referred to as a heavily coupled mode C.



Figure 4. Signi"cance of generalized mass in the dynamic response characteristics of a bending}torsion coupled
beam using the example of a box beam with an axial slit, (a) the "rst six natural frequencies (rad/s) and mode
shapes, (b) comparison of generalized mass in each bending}torsion coupled mode with generalized mass in pure
#exural or torsional modes; (c) contribution of each term (bending, torsion and coupling) to the generalized mass
in di!erent modes ( , bending; , torsion; , coupling); (d) percentage of modal contribution in the dynamic
#exural and torsional response of the beam at the tip due to the #exural load at the tip ( , bending; , torsion);
(e) percentage of modal contribution in the dynamic #exural and torsional response of the beam at the tip due to
the torque at the tip, ( , bending; , torsion).
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With the above classi"cation, the results for series (a) to series (c) have been summarized
in Table 3. The three main types of characterization used often lead to the same conclusion
as to whether a mode is bending, torsional or coupled as clear from Table 3. However, there



Figure 5. Signi"cance of generalized mass in the dynamic response characteristics of a bending}torsion coupled
beam using the example of a thin-walled semi-circular cross-section, (a) the "rst six natural frequencies (rad/s) and
mode shapes; (b) comparison of generalized mass in each bending}torsion coupled mode with generalized mass in
pure #exural or torsional modes; (c) contribution of each term (bending, torsion and coupling) to the generalized
mass in di!erent modes ( , bending; , torsion; , coupling); (d) percentage of modal contribution in the
dynamic #exural and torsional response of the beam at the tip due to the #exural load at the tip ( , bending;

, torsion); (e) percentage of modal contribution to the dynamic #exural and torsional response of the beam at
the tip due to the torque at the tip, ( , bending; , torsion).
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are cases where the three criteria used lead to three di!erent conclusions. These are shown
in bold script in Table 3. For example, the "fth mode of the beam s shown in Figure 3(a)
indicates that it is a heavily coupled mode (C). In contrast, Figures 3(b) show that the "fth



TABLE 3

Characterization criteria of modes based on displacement, total generalized
mass and contributory generalized mass

Characterization criteria

Total generalized Contributory
Beam no. Mode Displacement mass generalized mass

1 B
C

B
C

B
C

2 T
C

T
C

T
Cr 3 T

C
T
C

T
C4 C BC C

5 T
C

T
C

T
C

6 T T T

1 B B B
2 B

C
B B

s 3 T T
C

T
C4 C B B

5 C B BC

6 T TC TC

1 TC TC C
2 TC TC C

t 3 TC TC C
4 T T T
5 T T T
6 T T T

1 TC BC BC

2 T TC C
u 3 T TC TC

4 T TC TC

5 T TC TC

6 T BC C
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mode is a bending mode (B), but, when judged from the results of Figure 3(c) it is
predominantly a bending mode with a small amount of torsion in it (BC). There are other
examples in the table for which the simple-minded rule based on displacements may lead to
misleading conclusions. For instance, the fourth mode of beam r, in Figure 2(a) based on
displacements and rotations shows that the mode is heavily coupled in bending and torsion (C)
whereas Figure 2(b) which is based on the total generalized mass in that mode, reveals
a di!erent picture. Figure 2(b) indicates that the total generalized mass, being very close to that
of the uncoupled case of free bending vibration can be classi"ed as a predominantly bending
mode with a small amount of torsion in it (BC). Interestingly, Figure 2(c) which is based on
contributory generalized mass, leads to the same conclusion as Figure 2(a) showing that the
mode is heavily coupled (C). The investigation has shown that if a choice is to be made between
the criteria of total generalized mass and contributory generalized mass, it is the latter which
comes more and more into play to reveal the true nature of a bending}torsion coupled mode.

3.2. RESPONSE ANALYSIS

Following the modal analysis, a response study is undertaken. Each cantilever beam is
subjected in turn to a unit transverse force or to a unit torque at the tip, which is assumed to
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be random with the PSD distribution of an ideal white noise. The convergence of results for
response analysis was assured by using enough number of modes and it was found that the
"rst six normal modes were su$cient for each of the four illustrative beams. The response
quantities computed, are the mean-square values of the bending displacement and torsional
rotation of the cantilever beam at the tip.

For all the above cantilever beams, Figures 2(d)}5(d) show the percentage of modal
contribution to both bending and torsional response arising from a unit external transverse
excitation of white noise at the tip. Similarly, Figures. 2(e)}5(e) show the percentage of
modal contribution to both bending and torsional response arising from a unit external
torsional excitation of white noise at the tip. Both sets of results show that the coupling
e!ect in all the four example beams is pronounced showing the occurrence of bending-
induced twist and torsion-induced bending displacements. There are some interesting
features of these results, which are self-explanatory, but the ones which draw special
attention, need emphasising.

Figures 2(d)}5(d) show that the "rst few bending-dominated modes have made the largest
contribution to the dynamic #exural displacement for all the beams, whereas Figures
2(e)}5(e) show that the "rst few torsion-dominated modes have made the largest
contribution to the dynamic torsional rotation for all the beams.

In the case of beam r only the "rst mode contributes to the #exural response due to the
transverse force, but the torsional response due to this transverse force is induced by the "rst
two modes with a greater contribution from the second mode. Only the second mode
contributes to the torsional response due to the external torque, but the bending response
due to this torque is induced by the "rst two modes with a greater contribution from the
second mode. This is expected and is in accordance with the observation made in Table 3,
using all three criteria.

A similar trend for the bending response is observed for beam s when subjected to
a transverse force. However, the third mode contributes most to bending-induced torsional
response with relatively smaller contributions from the "rst, fourth, sixth and second modes
respectively. In relation to the torsional response due to the external torque, it is clearly
evident that the most important mode which contributes mainly to the response, is the third
mode. However, the torsion-induced bending response is mostly due to the third, "rst, and
fourth modes predominantly. Here the criterion of contributory generalized mass as
illustrated in Table 3 provides a logical explanation of these results.

For beam t the bending response as well as the bending-induced torsional response due
to the transverse force, are principally governed by the "rst, second and third modes,
respectively. On the other hand, the torsional response as well as the torsion-induced
bending response due to the external torque, are mainly in#uenced by the "rst and third modes,
with a small contribution from the second mode. The importance of characterizing the modes in
terms of contributory generalized mass is particularly evident from the results shown in Table 3.

Finally, for beam u, the bending response as well as the bending-induced torsional response
due to the transverse force, are principally governed by the "rst and second modes respectively.
Similarly, the torsional response as well as the torsion-induced bending response due to the
external torque, are mainly in#uenced by the "rst and second modes, with a small amount of
contribution from the third mode. Here again, the characterisation of modes in terms of
contributory generalized mass is seen to be the best way of assessing the modes (see Table 3).

4. CONCLUSIONS

Three di!erent but related methods of characterizing normal modes of bending}torsion
coupled beams have been studied in detail with particular reference to the concept of
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generalized mass. The constituent terms which contribute to the overall generalized mass of
a bending}torsion coupled beam have been identi"ed for a better understanding of
a coupled mode. Numerical results obtained for a wide range of coupled beams with
di!erent applications show that traditional methods of modal identi"cation solely based on
displacement, can be misleading. The investigation has rea$rmed that due recognition to
the signi"cance of generalized mass must be given when studying the free and forced
vibration characteristics of bending}torsion coupled beams. Although the method has been
applied to the special case of cantilever beams when obtaining numerical results, it is quite
straightforward to use for other end conditions.
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